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We consider the inverse-folding problem for RNA secondary structures: for a given �pseudo-knot-free�
secondary structure we want to find a sequence that has a certain structure as its ground state. If such a
sequence exists, the structure is called designable. We have implemented a branch-and-bound algorithm that is
able to do an exhaustive search within the sequence space, i.e., gives an exact answer as to whether such a
sequence exists. The bounds required by the branch-and-bound algorithm are calculated by a dynamic pro-
gramming algorithm. We consider different alphabet sizes and an ensemble of random structures, which we
want to design. We find that for two letters almost none of these structures are designable. The designability
improves for the three-letter case, but still a significant fraction of structures is undesignable. This changes
when we look at the natural four-letter case with two pairs of complementary bases: undesignable structures
are the exception, although they still exist. Finally, we also study the relation between designability and the
algorithmic complexity of the branch-and-bound algorithm. Within the ensemble of structures, a high average
degree of undesignability is correlated with a long time to prove that a given structure is �un-�designable. In the
four-letter case, where the designability is high everywhere, the algorithmic complexity is highest in the region
of naturally occurring RNA.

DOI: 10.1103/PhysRevE.75.021920 PACS number�s�: 87.15.Aa, 87.14.Gg, 87.15.Cc

I. INTRODUCTION

RNA plays an important role in the biochemistry of all
living systems �1,2�. Like DNA, it is a linear chain-molecule
built up from four types of bases—i.e., adenine �A�, cytosine
�C�, guanine �G�, and uracil �U�. It does not only transmit
pure genetic information. RNA works, e.g., as a catalyst in
the ribosome. While for the former only the primary
structure—i.e., the sequence of the bases—is relevant, for the
latter the kind of higher order structures—i.e., secondary and
tertiary structures—is essential. We mention the three fol-
lowing examples: �i� For successful protein synthesis three-
dimensional structures of rRNA �3,4� and tRNA �5� mol-
ecules are necessary. �ii� The catalytic properties of
ribozymes depend on their three-dimensional structures �6�.
�iii� The function of the internal ribosome entry site �IRES�
of picornaviruses which directs binding of ribosomal sub-
units and cellular proteins in order to accomplish translation
initiation, is based on higher order structures �7�.

Like in the double helix of the DNA, complementary
bases within RNA molecules can build hydrogen bonds be-
tween each other. Compared to DNA, where the bonds are
built between two different strands, RNA builds bonds be-
tween bases located on the same RNA strand. The secondary
structure is the information about which bases of the strand
are paired, while the spatial structure is called the tertiary
structure. The tertiary structure is stabilized by much weaker
interactions compared to the interactions which are respon-
sible for the secondary structure. This leads to a separation of
energy scales between secondary and tertiary structure, and
justifies neglecting the latter in many cases to obtain a first
fundamental understanding of the behavior of RNA �8�.

Therefore, although the tertiary structure is often important
for the functionality of a RNA, here it is sufficient to deal
with the secondary structure only.

One crucial point for the calculation of the secondary
structure is the energy model used: on the one hand, if one
aims to get minimum structures close to the experimentally
observed ones, one uses energy models that take into account
many different structural elements �9–12�—e.g., hair-pin
loops or bulges, each being described by a different set of
experimentally obtained parameters. On the other hand, if
one is interested in the qualitative behavior, one uses models
as simple as possible while conserving the general
behavior—e.g., in the simplest case a model which exhibits
only one kind of base �13� or models where the energies
depend only on the number and on the type of paired bases
�14–17�. Here we will consider only models with the latter
kind of interaction energy.

The standard procedure when dealing with RNA second-
ary structures is that one starts with a given sequence and
calculates quantities like the ground-state structure into
which the RNA will fold for low temperatures. In this paper
we look at the inverse problem: for a given secondary struc-
ture, does a sequence exist that has the given structure as its
ground state? If this is the case, we call the structure design-
able. We answer this question for different alphabet sizes—
i.e., different numbers of complementary bases. As an en-
semble of structures we choose a set of random structures of
given length and determine the fraction of structures that is
designable. In a related study, Mukhopadhyay et al. �18� also
considered different alphabet sizes, but by using a probabi-
listic algorithm—i.e., approximately, they determined how
many different other sequences have the same structure as
the ground state of a given sequence. Hence, by definition,
all structures encountered are designable. In contrast, we
generate structures randomly from scratch, and determine
whether there is at least one sequence that has this structure
as a ground state. Hence we can generate structures which
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might not be designable at all. The basic idea behind this
approach is that nature needs as many different structures as
possible to perform many different tasks and as it turns out,
four letters is the minimum number necessary for this. Fur-
thermore, we use an exact branch-and-bound algorithm to
verify �un�designability. In another earlier work Hofacker et
al. �11� �with improvements by Ref. �19�� looked at the same
question as to whether a given structure is designable. In
contrast to our work, they used only a probabilistic approach,
hence in some cases solutions may have been missed. Fur-
thermore, they studied a very restricted ensemble of struc-
tures, where the structures are assembled from substructures
found in nature already, which implies by definition a high
degree of designability. Also they did not study the depen-
dence on the alphabet size. Another difference between our
work and previous literature is that we also study the relation
between the designability and the algorithmic complexity—
i.e., the running time of our exact algorithm.

The paper is organized as follows. In Sec. II, we define
our model—i.e., we formally define secondary structures and
introduce our energy model and state the design problem. In
Sec. III, we explain how to calculate a bound for the ground
state with a dynamic programming algorithm and how to
solve the design problem with a branch-and-bound algorithm
augmented with a randomized algorithm. We also present in
detail in Sec. III C how we generate the ensemble of random
structures. Finally, in Sec. IV we show the results of our
numerical studies.

II. THE SECONDARY STRUCTURE MODEL
AND DESIGN PROBLEM

A. RNA secondary structure model

Since RNA molecules are linear chains of bases, they can
be described as a �quenched� sequence R= �ri�i=1,. . .,L of
bases ri�A. We denote the length of the sequence by L and
A is the alphabet, which contains the underlying base types
that build up the RNA sequence. Typically A= �A ,C ,G ,U�
is used, but we also consider here alphabets with two or three
letters. Within this single stranded molecule some bases can
pair and build a secondary structure. The Watson-Crick base
pairs—i.e., A-U and C-G—have the strongest affinity to
each other, they are also called complementary base pairs.
Each base can be paired at most once. For a given sequence
R of bases the secondary structure can be described by a set
S of pairs �i , j� �with the convention 1� i� j�L�, meaning
that bases ri and rj are paired. For convenience of notation
we further define a Matrix �Si,j�i,j=1,. . .,L with Si,j =1 if �i , j�
�S, and Si,j =0 otherwise. Two restrictions are used:

�1� (Noncrossing condition) Here we exclude so-called
pseudoknots, that means, for any �i , j� , �i� , j���S, either i
� j� i�� j� or i� i�� j�� j must hold—i.e., we follow the
notion of pseudoknots being more an element of the tertiary
structure �20�.

�2� (Min-distance condition) Between two paired bases a
minimum distance is required �j− i � �hmin, due to the bend-
ing rigidity of the molecule. Our main results presented be-
low will be for hmin=2, but for comparison we discuss the

unphysical case hmin=1 as well. Larger—and more
realistic—hmin values do not change the qualitative results
compared to the hmin=2 case, but are computationally more
demanding.

In the following we assume that each structure S fits to all
considered sequences R—i.e., for all pairs �i , j��S the in-
dices i and j are smaller or equal to the length L of the
sequence �1� i , j�L�. By Sm,n we denote a substructure of S
between the mth and nth letter—i.e., Sm,n

ª ��i , j��S �m� i
� j�n�. Similar, a subsequence between the mth and nth
letter is denoted by Rm,n= �ri�i=m,. . .,n.

B. Energy models

In this section we define an energy model, which gives for
every secondary structure S and every sequence R an energy
E�S ,R�. For a given sequence R the minimum

E�R� = min
S

E�S,R� �1�

is the ground-state energy of the sequence R.
Motivated by the observation that the secondary structure

is due to the formation of many base pairs via hydrogen
bonds, one assigns each pair �i , j� a certain energy e�ri ,rj�
depending only on the kind of bases. The total energy is the
sum over all pairs

Ep�S,R� = �
�i,j��S

e�ri,rj� , �2�

e.g., by choosing e�r ,r��= +� for noncomplementary bases
r, r�, pairings of this kind are suppressed. In our numerical
studies we restrict ourself to the energy model

e�r,r�� = 	Ep if r and r� are complementary bases,

+ � otherwise,


�3�

with a pair energy Ep�0 independent of the kind of bases.
Another possible model is to assign an energy Es to a pair

�i , j��S if also �i+1, j−1��S. This stacking energy can be
motivated by the fact that a single pairing gives some gain in
the binding energy, but also reduces the entropy of the mol-
ecule, because through this additional binding it loses some
flexibility. Formally, the total stacking energy of a structure
can be written as

Es�S,R� = � �
�i,j��S

EsSi+1,j−1 if for all �i, j� � S: ri,rj

are complementary bases

+ � otherwise.
�
�4�

Real RNAs cannot be described by just one energy param-
eter, because the free energy depends on the type and the size
of the structural elements—e.g., hair pin loops. Here, we
examine the sum of both models—stacking energy and pair
energy—
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E�S,R� ª Ep�S,R� + Es�S,R� , �5�

where the parameters Es and e�r ,r�� can be freely adjusted,
including both models discussed above. For real RNA both
parameters, Ep and Es, are of the same order of magnitude,
namely about 1–10 kcal mol−1 �9,21,22�, therefore we
choose Ep=−2 and Es=−1 in our simulations.

A sequence R is called compatible with a structure S, if
e�ri ,rj��0 for all �i , j��S.

Furthermore, we define for a structure S �independent of
R� the energy

E�S� ª Emin�S� + �
�i,j��S

EsSi+1,j−1, �6�

with Emin=minr,r��A e�r ,r��. For the energy model of Eq. �3�
it is Emin=Ep. Thus, E�S� is a lower bound of E�S ,R� for
any R.

C. Designing RNA secondary structure

The energy model �5� has been previously studied �23�, in
the standard way—i.e., by calculating ground states for given
sequences. In this paper we take, as already mentioned in the
Introduction, a different point of view: we choose a random
structure S and ask whether there exists any sequence R that
has this structure as its ground state.

The design problem can be more formally stated as fol-
lows: For a given structure S find a sequence R such that
E�S ,R�=E�R� holds. If such a sequence exists, the structure
S is called designable. However, we do not require that S is
the unique ground state of this sequence, since this issue has
been addressed previously �18� for sequences which are des-
ignable �in our sense� by definition. It would also be inter-
esting to consider a definition of designability of random
structures, which involves being a ground state of a sequence
and uniqueness of the ground state at the same time. Never-
theless, this would require much more computational effort,
since these structures are harder to find. Hence, such a study
is beyond the scope of this work and should be considered in
the future.

The design problem for an energy model without stacking
energy—i.e., which exhibits only a pair energy according to
Eq. �3�, can be solved easily as follows �Fig. 1�: assign to
any pair �i , j��S the letters A at position i and U at position
j, and for every unpaired position a base of type G �in the
two letter case use A again�. There are exactly �S� pairs of
bases, therefore the ground-state energy cannot be below
Ep �S�, which is just the energy of the structure S.

For the case Es�0 this construction scheme might fail as
one can see in the example shown in Fig. 1: regrouping of
the enclosed base pairs leads to the formation of two adjacent
pairs—i.e., a stack of size two. This results in an energy of
the regrouped structure below the energy of the given struc-
ture, hence the given structure is not a ground state of the
given sequence. Nevertheless, the structure shown in the ex-
ample is in fact designable, the slightly modified sequence—
positions 2 and 4 are swapped—AUGAGAGUUAGU—has
the given structure as a ground state.

The case hmin=1—i.e., neighboring bases can be
paired—is of little interest: both, from the physical point of
view—the RNA molecule cannot be bent into arbitrary
forms—as well as from the point of view of the design prob-
lem. For an undesignable example, look at the structure
sketched in Fig. 2: for any alphabet size there is only a finite
number of different 2-tuples �r1 ,r2�, whenever there are
more than this number of neighboring pairs paired in a struc-
ture, at least two of them must be of the same kind—e.g.,
�A ,U�—these two can be repaired, which leads to a gain of
some stacking energy, rendering the structure undesignable.

III. ALGORITHMS

In principle the design problem can be solved by calcu-
lating the ground-state energy E�R� of every compatible se-
quence R and testing whether this is equal to E�S ,R�, but,
because the number of sequences grow exponentially with
the sequence size L �roughly as �A�L−�S��, this is impractical.

Therefore we use a branch-and-bound algorithm, where
one tries to find an upper bound EB�Q�ªmaxR�Q E�R� for
the ground-state energies for a �large� set Q of sequences
compatible with the structure S. If this bound is below the
energy E�S� of the structure—i.e., EB�Q��E�S�—then none
of the sequences in Q can be a solution of the design prob-
lem.

Here, we consider particular sets of sequences, where at
some positions all sequences of the set have the same letter
�but possible different ones for the different positions�, and
where for all other positions all possible combinations of
letters occur, which are compatible with the sequence.
Hence, these positions can be described by a joker letter. For
a more formal definition of Q, see below. In Sec. III A an
algorithm is explained, which calculates an upper bound for
the ground-state energy of such sequences.

FIG. 1. In the case Es=0 the structure can be easily designed—
e.g., by building �A ,U�-pairs for the paired bases, and assigning G
to the unpaired bases. However, this is not necessarily a solution for
the Es�0 case: in this example two pairs could be repaired �dashed
lines� giving a lower overall energy.

FIG. 2. In the case of hmin=1 and Es�0 this is an example of an
undesignable structure. There is only a finite number of different
2-tuples �r1 ,r2�. Whenever there are more than this number of
neighboring pairs paired in a structure, at least two of them must be
of the same kind—e.g., �A ,U�—these two can be repaired �dashed
lines�, which leads to a gain of some stacking energy, rendering the
structure undesignable.
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This algorithm is used within the bound step of the
branch-and-bound algorithm, which is explained in Sec.
III B 1.

A. Calculating a bound for the ground-state energy

In this section we introduce a modification of the algo-
rithm presented in Ref. �23� which allows us to calculate an
upper bound for the ground-state energy of sequences, where
some bases are still unassigned, i.e., which are represented
by the joker letter.

Thus, for a formal description of the algorithm we extend
the alphabet A by the joker-letter �, where � represents any
letter in the original alphabet. Note that � is complementary
to any r�A. The new alphabet is denoted by A*

ªA� ���.
Sequences R*= �ri

*�i=1,. . .,L, r*
i �A*, over this extended alpha-

bet A*—we call R* a generalized sequence—represent a set
Q of sequences over the original A: Q= ��ri�i=1,. . .,L �ri

�A ,ri=r*
i if r*

i �A�. For a given structure S and a general-
ized sequence R*, the scheme explained in the following can
be used to calculate a bound for the ground-state energy.
Note that for a sequence without a �-letter this bound is
equal to the ground-state energy.

We start the explanation of the algorithm by considering
the contribution to the bound arising from a single pair �i , j�.
If the letters in the sequence are fixed—i.e., ri ,rj �A—then
the energy contribution is simply e�ri ,rj�, since there is no
choice. If at least one of the two letters is the joker letter �,
then we have different choices. First, if �i , j��S, then the
energy contribution must be negative, because otherwise,
since we are considering ground states, bases i and j would
not be paired leading to an energy contribution zero. On the
other hand, we are looking for a maximum over all se-
quences described by the generalized R*, hence we have to
take the maximum over all possible negative contributions,
either over all possible combinations of two letters �two �
symbols�, or, over all possible letters at the one position with
a � symbol. Second, if �i , j��S, then the energy contribution
should be positive if bases i , j get paired nevertheless. This
ensures that within the ground-state calculation, automati-
cally the case is selected where bases i , j are not paired. We
assume that for all possible cases with one or two � symbols,
combinations of letters are always available, such that the
pair energy is positive. Since in this case, the ground-state
requirement will automatically disregard the pair �i , j�, in-
stead of maximizing over all energies, we can simply assume
the energy contribution +� here. This leads to the energy
contribution eR*,S

* �i , j� for a pair �i , j� which depends on the
given generalized sequence R* and the given structure S,

eR*,S
* �i, j� =�

e�ri,rj� if ri,rj � A ∧ �i − j� � hmin,

Emax
*,* if ri = * ,rj = * ,�i, j� � S ,

Emax
ri,* if ri � A,rj = * ,�i, j� � S ,

Emax
*,rj if ri = * ,rj � A,�i, j� � S ,

+ � else
�

�7�

with the largest possible negative pair energies

Emax
*,*

ª max�e�r,r�� � 0�r,r� � A� ,

Emax
r,*

ª max�e�r,r�� � 0�r� � A� ,

Emax
*,r�

ª max�e�r,r�� � 0�r � A� �8�

and for the maximum of the empty set: max � ª−�. For
alphabets, where each base has a complementary base—e.g.,
the two- and four-letter cases discussed below—with the en-
ergy e�r ,r�� from Eq. �3� eR*,S

* has the form

eR*,S
* �i, j� = �e�ri,rj� if ri,rj � A ,

Ep if ri = * ∨ rj = * ,�i, j� � S ,

+ � else.
� �9�

For alphabets with letters that have no complementary
counterpart—e.g., letter G, in the three-letter alphabet of
Sec. IV B—the sets in Eq. �8� might be empty leading to an
energy contribution −�—i.e., resulting in an upper bound
EB�R*�=−�. In our implementation of the algorithm we do
not consider �generalized� sequences, where at a position of a
paired base such a letter appears, because this would lead to
noncompatible sequences, i.e., sequences which are not com-
patible with the given structure. Note that for the case that
also the pair �i−1, j+1� is present, additionally to eR*,S

* �i , j�
a stacking-energy contribution Es arises. This is handled by
the following recursive equations, which perform the
ground-state calculation. They are slightly modified com-
pared to Ref. �23�. We denote by Ni,j the maximum ground-
state energy over the set of compatible subsequences given

by the generalized subsequence ri
* ,ri+1

* , . . . ,rj−1
* ,rj

*. N̂i,j is de-
fined in the same way, only that additionally it is assumed
that letters ri−1

* and rj+1
* are paired, which leads simply to an

additional stacking-energy contribution. The basic idea is
that for the ground state of subsequence ri

* , . . . ,rj
* either the

last letter j is not paired, or it is paired to another letter k
� �i , i+1, . . . , j−1� �the requirement j− i�hmin is treated
through suitable choices of the energy eR*,S

* �i , j��. The
ground state is the minimum over all these cases, where in
each case, due to the exclusion of pseudoknots, the ground-
state calculation decomposed into the calculation for shorter

subsequences. The recursion equations for Ni,j and N̂i,j read
as follows:

Ni,j = min�Ni,j−1,min
k=i

j−1

�Ni,k−1 + eR*,S
* �k, j� + N̂k+1,j−1��

for j − i � 0,

N̂i,j = min�Ni,j−1,eR*,S
* �i, j� + Es + N̂i+1,j−1,

min
k=i+1

j−1

�Ni,k−1 + eR*,S
* �k, j� + N̂k+1,j−1�� for j − i � 0,

Ni,j = N̂i,j = 0 for j − i � 0. �10�

The values of Ni,j and N̂i,j are calculated “bottom up”—
i.e., in a dynamic programming fashion, starting at small
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values of j− i until one arrives at j− i=L−1. The wanted
bound is EB�R*�=N1,L, and within our energy model this
bound is never larger than E�S�. In general, Ni,j is the bound
for the ground-state energy of the subsequence �rk

*�k=i,. . .,j.
It is worthwhile to note that it is not necessary to recal-

culate the whole matrix �Ni,j�1�i�j�L if only one letter in R*

has been changed—e.g., if base rk has been modified this
only influences subsequences which contain this base—

therefore it is sufficient to recalculate all Ni,j and N̂i,j with
i�k� j. This reduces the numerical effort for calculating
N1,L, but it is still of order O�L3�.

B. Algorithms for solving the design problem

In this section we describe two algorithms which we used
to solve the design problem stated above. The first one is
deterministic—i.e., it guarantees to either successfully find a
solution or to prove that no solution exists. In general, the
algorithm has to consider exponentially many sequences �in
the length L�. In the case that the problem has a solution, a
randomized algorithm is often faster in finding a solution,
therefore we also implemented such an algorithm �19,24�,
and combined both algorithms.

1. Branch-and-bound algorithm

Our deterministic algorithm follows the branch-and-
bound approach �e.g., in Ref. �25�, pp. 499 or in Ref. �26�
Chap. 12�. Here, it finds a sequence R—if such a sequence
exists—that has the structure S as one ground state.

The idea of the algorithm is that it constructs a tree, where
each node represents a generalized sequence R*—i.e., a set
Q of sequences—and all children of a node represent a par-
tition of Q. The root node stands for the set of all sequences
of length L—i.e., which is described by the generalized se-
quence �ri

*�i=1,. . .,L ,ri
*=*. For every node �ri

*� in the tree with
at least one rj

*=*, its children are constructed by replacing rj
*

with one letter from A. Sequences with no �-letters are the
leaf nodes of the tree �sets containing exactly one element/
sequence�.

In Fig. 3 a pseudocode of the algorithm is shown. There,
T contains all nodes of the tree which have not been treated
yet. Initially T contains only the root node. New nodes are
generated from existing nodes by selecting a node—i.e., a
generalized sequence—selecting one position where a � ap-
pears, and generating �A� new nodes by replacing this � by
all possible letters ��A. In this way the algorithm traverses
the tree from the root towards the leaves, calculating an up-
per bound of the ground-state energies of the sequences rep-
resented by this node. Within the algorithm, two functions
appear, GROUND-STATE ENERGY �R�

*� and GROUND-STATE

BOUND �R�
*�, which essentially use Eq. �10� to calculate the

ground-state energy and the upper bound for it, respectively.
The former function called in the case R�

* does not contain
the � symbol. In the case R�

* contains the � symbol, if the
upper bound obtained by the latter function is below the
energy E�S� of the structure S, none of the sequences repre-
sented by this node has this structure as a ground state, and
the descent towards the children of this node can be stopped

here: the algorithm ignores this node by not setting it into T.
On the other hand, if a leaf node is reached and its ground-
state energy is equal to the energy of the structure, a solution
is found and the algorithm terminates successfully.

The selection steps in lines 4 and 5 require further expla-
nation: we use a stacklike data structure to implement T, so
the last inserted sequence in line 13 is used here first �depth-
first search�. The selection step of a joker-letter in line 5 is
more difficult: we tried some strategies in which the next
inserted base can be chosen. All these strategies were static
ones, that means the order of insertion was chosen based on
the concrete structure given, but the order was fixed before
starting with the algorithm. At the end we found the follow-
ing strategy to be the best �33�: We first insert paired bases,
and we choose the base pair �i , j� first that encloses other
bases the most—i.e., Si,j is the largest substructure of any
�i , j��S. The procedure continues with the substructure
Si+1,j−1, if it is not empty, or continues with a pair �i� , j��
�Si+1,j−1 enclosing the next largest substructure. At the end
we insert the unpaired bases.

2. Randomized steepest-descent algorithm

We furthermore have implemented a randomized algo-
rithm for finding a solution of the design problem for a given
structure S similar to Ref. �24�. Note that in Ref. �19� a much
more sophisticated method is explained, which we do not
need here, since we use a combination of the complete
branch-and-bound approach with the randomized algorithm.
We start with a compatible sequence—e.g., every pair of the
structure is assigned a A-U pair and all unpaired bases are
assigned to G �again A if the alphabet contains only two
letters�. Either this already solves the design problem or we
modify the sequence at one position as follows: for the given
sequence we calculate a ground-state structure S0, then we
choose a pair �, which is in exactly one of the structures S
and S0 �i.e., ��S�S0� and randomly modify one of these

FIG. 3. Pseudocode of the branch-and-bound algorithm. In line
15 the algorithm can be augmented, e.g., with a randomized
algorithm—see Sec. III B 2.
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two bases. If ��S we keep the other base complementary.
We accept this step, if the ground-state energy is not below
that of the previous sequence. The procedure is repeated until
a sequence is found that solves the design problem, or until a
certain number of random steps has been executed, in this
case, the algorithm stops unsuccessfully.

Of course, this method can never prove that a certain
structure is undesignable. However, we have combined this
strategy with the branch-and-bound algorithm above: when-
ever a rejection step takes place—i.e., the condition in line
14 of algorithm in Fig. 3 is reached—one random step with
an independently stored sequence is done. This can be quite
efficient in the designable case, because on average it re-
quires much less steps than the deterministic branch-and-
bound algorithm. On the other hand it doubles the efforts in
the undesignable case. This pays off in particular for the
four-letter case discussed in Sec. IV C, because there almost
all structures are designable. Especially, for design times
much larger than the sequence length—i.e., T�10L—the
random method is almost always faster than the deterministic
algorithm. This is different for the two- and three-letter case,
where the deterministic algorithm requires less steps.

C. Generating random secondary structures

Below we examine the designability of randomly gener-
ated secondary structures for a given sequence length L. We
parametrize this ensemble of random structures by the prob-
ability p that a certain base in the sequence is paired �for
rRNA p is typical in the range 0.6–0.8 �27��. We construct
each sample in two steps: First, we draw the number of pairs
P of the structure from a binomial distribution between 0 and
�L /2� centered at pL /2. Then, among all possible structures
of length L having P pairs, we select one randomly, such that
each structure has the same probability of being chosen. To
achieve this, we have to perform a preprocessing step:

In the preprocessing step, we calculate the number S�P ,L�
of possible structures of a sequence of length L and with P
pairs. The number S�P ,L� is the number of possible struc-
tures S�P ,L−1� of the smaller sequence plus the number of
possible structures, where base L is paired with base L−k,
for all feasible values of k. Hence, the value S�P ,L� can be
calculated by the following recursion relation �28�:

S�P,L� = S�P,L − 1�

+ �
k=hmin

L−1

�
q=0

P−1

S�q,k − 1�S�P − q − 1,L − k − 1� ,

S�P = 0,L� = 1, S�P � 0,L� = S�P � L/2,L� = 0. �11�

The first sum is over all possible distances between these two
bases; the second sum is over the number of pairs enclosed
by the pair �L−k ,L�. The product is the number of possible
structures having q pairs enclosed by �L−k ,L� and the re-
maining P−q−1 pairs in the range from 1 to L−k−1. The
construction of the matrix S�P ,L� requires O�L4� calculation
steps, but this is required only once for all lengths up to a
maximum length L. Note that for hmin=1 the number of
structures can be calculated explicitly

S�P,L� =
1

P + 1

2P

P
�
 L

2P
� .

.
Now, for each sample to be generated, where the number

P of pairs has been randomly chosen as explained above, the
actual structure is selected in the following way. First, note
that depending on hmin there are values of P and L, where no
structures exist, i.e., S�P ,L�=0, these cases are rejected im-
mediately. Otherwise, the random structure is constructed
with a backtracing algorithm: starting at S�P ,L�, we choose
one of the summands in �11� with a probability proportional
to its value, then we insert the corresponding pair to the
structure and recur into the subsequences. As an example we
show the random generation of a structure of length L=8
with P=3 pairs �see Fig. 4�. It is

S�3,8� = S�3,7� + S�0,1�S�2,5� + S�1,3�S�1,3�

+ S�2,5�S�0,1� + S�2,6�S�0,0� .

Each of the summands represents a possible pairing of base
number 8 with another base—with the exception of the first
summand, which counts the number of possible structures,
where base number 8 is not paired at all. Let us assume that
by chance the last summand was chosen within the random
selection, meaning that base 8 is paired with base 1. Leaving
two pairs which must be distributed between the bases from
2 to 7; here we assume that base 7 with base 5 is then paired,
leaving only one possibility for the remaining pair, namely
base 4 paired with base 2.

Finally, note that the average number of structures avail-
able for p and L is given by

s�p,L� = �
P=0

�L/2� 
�L/2�
P

�pP�1 − p��L/2�−PS�P,L� . �12�

FIG. 4. Example of the structure generation hmin=2. Construc-
tion of a random structure with P=3 and L=8. The way of con-
structing a �random� structure from this is indicated in the table by
the arrows. There are 10 possibilities to construct a structure of
length 8 with three pairs of bases. In step s1 we choose to link base
1 and 8, which leaves a structure of length 6 with two pairs en-
closed and a �trivial� structure of length 0 outside this pair. In step
s2 we choose base 5 and 7 to be paired, leaving a trivial structure of
length 1 enclosed and structure of length 3 with one pair outside.
For the latter there is only one choice, namely to connect base 2 and
4 �step s3�. The resulting structure is shown in the figure.
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IV. NUMERICAL RESULTS

For an ensemble of randomly chosen structures of given
sequence length L, we examined whether these structures are
designable or not. We used different alphabets with two,
three, and four letters. All calculations for the results pre-
sented below were performed with the parameters Ep=−2,
Es=−1, and hmin=2. Note that increasing the stacking energy
Es in comparison to the pair energy makes the design prob-
lem more difficult: in the limit Es→−� it would be favorable
to remove all nonstacked pairs from the structure, if this
allows only one additional stacked pair. Considering the
minimum distance hmin between two paired bases of natural
RNA, it seems to be more appropriate to use a larger value
for hmin—e.g., hmin=5 would be more appropriate—but this
increases the computational effort without changing the
qualitative results: only hmin=1 has a different qualitative
behavior �see Fig. 2�.

A. Two-letter alphabet

The alphabet consists of two complementary letters, e.g.,
A and U, only. In Fig. 5 the fraction U of the undesignable
structures is shown as a function of the probability p that a
base is paired. For small p the fraction U for all lengths L
increases quickly with growing p from small values to its
maximum possible value close to one. Thus, in particular for
moderate RNA lengths L�100, almost no structure is des-
ignable. For structures where many bases are paired, only a
quite restricted class of structures is possible—i.e., structures
with many nested base pairs, which obviously have a high
probability to be designable. For this reason the undesign-
ability U decreases again for larger p.

For fixed p values the value of U increases with the se-
quence length L, which seems to be plausible because, if a
structure of small length is undesignable, a larger structure
containing this structure are also undesignable.

We conclude that two letters do not suffice to provide a
large variety of secondary structures needed in nature to per-
form the large number of required RNA functions.

B. Three-letter alphabet

The alphabet consists of two complementary letters—e.g.,
A and U—and one additional letter—e.g., C—not comple-
mentary to any other letter. As one can see from Fig. 6 com-
pared to the two-letter case a larger amount of structures is
designable, but with larger sequence lengths still a larger
fraction becomes undesignable.

We also looked at the “time” T required to find a
solution—if any exists for the fully deterministic branch-
and-bound algorithm. By “time” we mean here, how often
either of the two functions GROUND-STATE ENERGY �R�

*�
and GROUND-STATE BOUND �R�

*� �see Fig. 3� is called. Since
these two functions are called at least L-times, T is at least
O�L�. In Fig. 7 the average of ln�T /L� is shown as a function
of p. Because T�L a value close to zero indicates that a
solution is found �on the average� almost immediately.

The maxima of these curves are almost at the positions as
in Fig. 6, meaning that for values of p, where a large fraction
of the structures is undesignable, it is difficult—i.e., it re-
quires many steps—to find a solution for the designable
structures. The structures which are not designable behave a
bit differently, cf. Fig. 8. There the time needed to prove that
no design is possible increases monotonously with p, and is
much larger than the time needed to find a solution in the
designable cases. Nevertheless, the total running time of the
branch-and-bound algorithm is mostly determined by the
designable case, hence we observe a peak close to p=0.6 as
well, see lower curve in Fig. 8. This behavior of the running
time is similar to the behavior found for suitable random
ensembles of classical combinatorial optimization problems
�29,30�, as observed for the satisfactorily problem �31� or the
vertex-cover problem �32�. Also in these and other cases, the

FIG. 5. The undesignability U of random structures for an un-
derlying two-letter alphabet is shown as a function of the probabil-
ity p that a base is paired. Even for small sequences and low prob-
abilities of bases being paired, almost all structures are
undesignable. Missing error bars are of the size of the symbols
or smaller, and omitted for legibility. �Parameter used: Ep=−2,
Es=−1, hmin=2, 1000 samples.�

FIG. 6. The undesignability U of random structures for an un-
derlying three-letter alphabet is shown as a function of the probabil-
ity p that a base is paired. In comparison to the two-letter case �Fig.
5� many more structures are designable, but still a reasonable frac-
tion of structures is undesignable. In light gray the average number
s�p ,L=90� of structures of length 90 is shown �see Eq. �12��: The
maximum of this curve is at smaller p value than the maximum of
U�p ,L=90�. �Parameter used, Ep=−2, Es=−1, hmin=2,1000
samples.�
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running time of exact algorithms similar to branch-and-
bound increases strongly when the average number of un-
solvable random instances increases. The only difference to
the present case is that for these classical optimization prob-
lems in the limit of diverging system sizes, phase transitions
between solvable and unsolvable phases can be observed. In
the case of RNA secondary structures, we are interested only
in finite lengths, because in nature finite �rather short� RNA
sequences dominate anyway.

Finally, we also want to mention that the maximum of the
average number of structures s�p ,L�—as shown in Fig. 6—is

at a slightly smaller p�0.54 than the maxima of U�p� and
�ln T /L�. Hence, in contrast to the two-letter case, there is at
least a window of p values, where a large number of design-
able structures exist. On the other hand, in the range p
� �0.6, . . . ,0.8�, where most of the wild-type RNA can be
found, the number of designable structures is still small. Es-
pecially for sequence lengths L�1000 we expect that again
most structures are undesignable. Hence, three letters seem
also not to be sufficient.

C. Four-letter alphabet

The alphabet consists of two pairs of complementary
letters—e.g., A, U and C, G. In this case we observe that for
all lengths up to L=90 the undesignability U is essentially
zero—i.e., so far we have not found any random structure
that is undesignable. This means that four letters are suffi-
cient, at least for moderate system lengths, to design all pos-
sible structures that may be needed in cell processes. Never-
theless, as shown in Sec. IV D, structures exist that are
undesignable even in the four-letter case, but such structures
must be quite rare for lengths up to L=90. This means that in
the limit of infinite RNA lengths, which is only of abstract
academic interest, almost all random structures become un-
designable, because the probability that somewhere in the
infinite sequence there is an undesignable subsequence of
finite length, is exactly one, as explained in the next section.
Since, as already pointed out above, naturally occurring
RNA must be only of rather restricted lengths to perform
their functions, this effect has no influence and a four-letter
alphabet seems to be sufficient.

In Fig. 9 we show the average “time” T to find a solution
as a function of p, but here we used a combined
deterministic-randomized algorithm, which is quite fast for
low pairing probabilities—i.e., p�0.4—where on the aver-
age less than L ground-state calculations are necessary to
find a solution. On the other hand, for values p�0.6 the
design time T seems to grow faster than exponentially in the
sequence length L. This strong increase of the running time

FIG. 7. For the three-letter alphabet the design time T for des-
ignable structures is shown as a function of the pairing probability
p. The positions of the maxima are at similar positions as the cor-
responding maxima in Fig. 6. Missing error bars are of the size of
the symbols or smaller, and omitted for legibility. �Parameter used,
Ep=−2, Es=−1, hmin=2,1000 samples.�

FIG. 8. The average time for the undesignable structures re-
quired to verify the undesignability is shown for three different
lengths �symbols with error bars� for the three-letter case. For com-
parison in the lower part of the figure the average time �L=90� for
designable structures �solid curve; cf. Fig. 7� and the average time
to prove either designability or undesignability �dashed curve� are
shown. In general the higher the pair probability p is the more
difficult it becomes to prove the undesignability. Furthermore one
can see that it is much more difficult to prove undesignability than
to find a solution in the designable case. For probabilities p below
0.3 or above 0.8 only a few structures are undesignable and the
corresponding error bars become large—i.e., more samples are
required to get better results in this regime. �Parameter used, Ep

=−2, Es=−1, hmin=2,1000 samples.�

FIG. 9. For the four-letter alphabet the design time T for des-
ignable structures is shown as a function of the pairing probability
p. The positions of the maxima are at similar positions as the cor-
responding maxima in Fig. 7. Missing error bars are of the size of
the symbols or smaller, and omitted for legibility. �Parameter used,
Ep=−2, Es=−1, hmin=2,1000 samples.�
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is not accompanied by an increase of the undesignability U,
at least not on the length scales we can access with the al-
gorithm, since we do not find any undesignable structures in
this range. This is different from the three-letter case and
from the classical optimization problems cited above. Nev-
ertheless, it is striking that the structures which are hardest to
design are close to the region p� �0.6, . . . ,0.8�, where the
naturally occurring RNA secondary structures can be found.
Furthermore, this strong increase of the running times means
that one cannot use the randomized algorithm to look
quickly for probably undesignable structures in the four-
letter case: one cannot just stop searching after a search time
which only increases polynomially with the sequence
lengths, because in this case one would even miss the des-
ignable structures. Hence, longer RNA—i.e., random RNA
which are not designable—currently seem out of reach.

D. Discussion

While in the two-letter case a large fraction of random
structures is not designable, only a small fraction of them is
undesignable when using a three-letter alphabet. In the four-
letter case designability seems to dominate the structure
space by far: in fact, so far we have not found any random
structure which is undesignable for the given parameter �Es
=−1, Ep=−2, hmin=2�. This leads to the question as to
whether there are any undesignable structures at all.

Indeed, there are such structures �see Fig. 10�: for a given
length L build a non-nested structure by the pairs ��hmin

+1�n+1, �hmin+1��n+1�� with n=0,1 ,2 , . . . and �hmin+1�
	�n+1��L. Such structures are examples for chains: a
chain C of length l is a set of pairs C
= ��i1 , j1� , �i2 , j2� , . . . , �il , jl�� with the property jn+1= in+1 for
n=1, . . . , l−1. A chain C which is a subset of a structure S,
i.e., C�S, is called a subchain of S. Chains of large enough
lengths—e.g., the structure sketched in Fig. 10—are undes-
ignable for a similar reason which makes the structure shown
in Fig. 2 undesignable �with hmin=1�: there are only many
finite possible combinations of bases being paired, such that
after a while a repetition occurs. Nevertheless, the argument
is more complex here and we do not go into details. We only
show in Table I the minimum length of structures sketched in
Fig. 10 for which these become undesignable for different
hmin and the corresponding running times of the branch-and-
bound algorithm.

This implies that structures S which contain a subchain C
of length l�16 are also undesignable. In the limit L→�
with pair probability p�0 we expect that almost all random
structures contain a subchain of size l�16, thus making
these structures undesignable. However, for native RNA this

limit is not relevant: For an ensemble of 10.000 random
structures of length L=1024 and pair probability p=0.7 we
looked for each structure for the subchain of the longest
length l and found none longer than 11. Assuming that all
undesignable structures in the four-letter case are undesign-
able because they contain a subchain longer than l=15, such
structures are very rare even for biological lengths.

Finally, we want to mention briefly the five-letter case:
two pairs of two complementary bases �A-U, C-G� and
an unpairable fifth letter �e.g., X�. In this case it is easy
to see that even structures as explained in Fig. 10 are
designable: Start with a sequence of type
ACUGACUGACUGACUG. . ., replace the bases at posi-
tions 2,5,8,… with hmin−1 letters of type X, e.g., yielding in
the case hmin=2: AXUGXCUXACXGAXUG. . .·. First, in
this sequence stacked pairs are impossible, because for non-
pair riri+1 there is a required complementary pair r̄i+1r̄i. Fur-
ther, this sequence is compatible with the structure and there
are exactly as many complementary bases paired as there are
pairs in the structure. Of course, this does not prove that with
five letters all structures are designable, but undesignable
structures are at least expected to be even much less frequent
than in the four-letter case.

V. SUMMARY

We numerically investigated the RNA secondary-structure
design problem for different alphabet sizes. We used a deter-
ministic branch-and-bound algorithm to get exact answers as
to whether a given structure is designable or not. Due to
efficiency reasons in the designable cases, we combined this
algorithm with a probabilistic one, gaining significant perfor-
mance improvements in the four-letter case.

We examined the designability for an ensemble of random
structures as a function of the probability that a base of a
sequence is paired. Our findings for the two-letter case are
that it is almost impossible to design most of the structures.
In the three-letter case already for small sequence sizes �L
�90� about 10% of the structures are undesignable for bio-
logical relevant pairing probabilities, leading to the conclu-
sion that for biological sequence sizes �L�1000� again most
structures are undesignable.

Interestingly, this changes when going to the �natural�
four-letter alphabet: within our study we have not found a
single random structure that we could prove to be undesign-
able. Although there are structures that are undesignable,
they occur with very low frequencies.

FIG. 10. Principle of a nondesignable structure. Structures con-
sisting of a repeated pattern of simple paired bases become undes-
ignable, if this pattern is repeated often enough. For results see
Table I.

TABLE I. The minimum length of structures according to Fig.
10 that are undesignable. In the last column the time T required to
prove the undesignability with the branch-and-bound algorithm is
shown.

hmin L pairs T

2 48 16 6	107

3 60 15 5	108

4 75 15 2	109
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We further studied the computational time required to de-
sign a structure. Although this surely depends strongly on the
algorithm, we found in the three-letter case that the required
time is maximal in the regime where the undesignability is
largest. In the four-letter case the design times look similar to
those of the three-letter case: again we observed a maximum
of the design times for p�0.6, close to the region where
naturally occurring RNA can be found. Although �almost� all
structures are designable, it is sometimes difficult to design
them.
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